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Distributed Systems

Distributed Systems
Synchronize a ‘real-time’ clock wi-directionan

Resetting the clock drift by regular reference time re-synchronization:

C'measured time'

Maximal clock drift § defined as:

(1+68)7 "< C(tfz :g(“) <(1+8)

‘real-time’ clock is adjusted
forwards & backwards

= Calendar time

t'realitime’

page 550 of 758 (chapter 8: “Distributed Systems” up to page 641

Distributed Systems

Distributed Systems
Distributed critical regions with synchronized clocks

Analysis
* No deadlock, no individual starvation, no livelock.
* Minimal request delay: 2L.
* Minimal release delay: L.

¢ Communications requirements per request: 2(N — 1) messages
(can be significantly improved by employing broadcast mechanisms).

¢ Clock drifts affect fairness, but not integrity of the critical region.

Assumptions:
¢ Lis known and constant = violation leads to loss of mutual exclusion.
* No messages are lost = violation leads to loss of mutual exclusion.

©2020 Uwe R. Zimmer, The Ausiralian National University page 553 of 758 (chapter 8: “Distributed Systems’

_‘i'ii—-' —
*- Distributed Systems

Distributed Systems
Synchronize a ‘real-time’ clock torward oniy)
Resetting the clock drift by regular reference time re-synchronization:

C'measured time’

Maximal clock drift § defined as:

1 _ Clty) —C(ty) _
R
‘real-time’ clock is adjusted
forwards only
= Monotonic time

trealitime’

page 551 of 758 (chapter 8: “Disributed Systems” up to page 641)

Distributed Systems

Distributed Systems
Virtual (logical) time [Lamport 1978]

a—-b=C)<Cb)

with a = b being a causal relation between a and b,
and C(a), C(b) are the (virtual) times associated with a and b

a — biff:
a happens earlier than b in the same sequential control-flow or
a denotes the sending event of message m,
while b denotes the receiving event of the same message m or
there is a transitive causal relation betweenaandb: a > e; > ... > e, > b

Notion of concurrency:
allb= —(a~>b)AN—(b~a)

©2020 Uwe . Zimmer, The Austalian Nation page 554 of 753 (chapter 8 “Disributed Sysie
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Distributed Systems

Distributed Systems
Distributed critical regions with synchronized clocks

¢ Vtimes:
V received Requests: Add to local RequestQueue (ordered by time)
V received Release messages:
Delete corresponding Requests in local RequestQueue

1. Create OwnRequest and attach current time-stamp.
Add OwnRequest to local RequestQueue (ordered by time).
Send OwnRequest to all processes.

2. Delay by 2L (L being the time it takes for a message to reach all network nodes)
3. While Top (RequestQueue) # OwnRequest: delay until new message
4. Enter and leave critical region

5.Send Release-message to all processes.

Distributed Systems

Distributed Systems
Virtual (logical) time
a—b=Ca)<Cb)
Implications:

C@<ck ="
C(a =C)="?

C(a) = C(b)<C(c)=>?
Cl@<cl)<cl)="?

Distributed Systems

Distributed Systems
Virtual (logical) time
a~b=C)<Cb)
Implications:

C@ <C(b)= —(b~-a)
Cl@=ck)=alb

Cl@ =clb)<Clc)=7?
Cla)<cC)<Clo)=?

Distributed Systems

Distributed Systems
Virtual (logical) time
a—b=Cla<Cb)
Implications:

C@<c)=—-b-a=@@-»bV@lb)
Cl@=CcM)=allb=—=(a~b)A—(b~a)

C(a) = C(b) < C(c)=?
Cl@<c)<cl=?

Distributed Systems

Distributed Systems
Virtual (logical) time
a—- b= C(a) <C(b)
Implications:

C@<chb)=-(b-a=@-hbVlh)
Cl@=Cc)=alb=—(a>b)A—(b~ a)

C(a) = C(b) < C(c) = —(c ~ a)
C(a) < C(b) <Clc) = —(c~ a)




Distributed Systems

Distributed Systems
Virtual (logical) time

a—b=Ca<Cb)
Implications:

C@) <C()= —(b—-a)=1(~-b)V(alb)
C(@) =C() =>allb=—(a~b)A—(b~a)

Cl@=C)<Cl=—(c»a)=(@~c)Vlc)
Cl@<ch)<Cl=—(c~a)=(~-cVilo

apter 8: “Distrbuted Systems” up to page 641
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Distributed Systems

Distributed Systems
Distributed critical regions with logical clocks

e V times: V received Requests:
Add to local RequestQueue (ordered by time)
Reply with Acknowledge or OwnRequest
* V times: V received Release messages:
Delete corresponding Requests in local RequestQueue

1. Create OwnRequest and attach current time-stamp.
Add OwnRequest to local RequestQueue (ordered by time).
Send OwnRequest to all processes.

2. Wait for Top (RequestQueue) = OwnRequest & no outstanding replies
3. Enter and leave critical region
4. Send Release-message to all processes.

we R

Distributed Systems

Distributed Systems
Virtual (logical) time

Time as derived from causal relations:

z T 7 P £y 5
& Events in concurrent control flows are not ordered.

i No global order of time.

chapter 8: “Disributed Systems” up.

_‘a'ib —
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Distributed Systems
Distributed critical regions with logical clocks

Analysis
¢ No deadlock, no individual starvation, no livelock.
¢ Minimal request delay: N — 1 requests (1 broadcast) + N — 1 replies.
* Minimal release delay: N — 1 release messages (or 1 broadcast).

e Communications requirements per request: 3(N — 1) messages
(or N —1 messages + 2 broadcasts).

¢ Clocks are kept recent by the exchanged messages themselves.

Assumptions:
* No messages are lost = violation leads to stall.

Distributed Systems

Distributed Systems
Implementing a virtual (logical) time

1.VP:C; =0

2.VP;:
Vlocal events: C; = C; +1;
V send events: C; = C; +1; Send (message, C));
V receive events: Receive (message, C,,,); C; = max(C;,C,,) +1;

|
]
=3 Distributed Systems

Distributed Systems
Distributed critical regions with a token ring structure

1. Organize all processes in a logical or physical ring topology
2.Send one token message to one process

3.V times, Vprocesses: On receiving the token message:
1. If required the process
enters and leaves a critical section (while holding the token).
2. The token is passed along to the next process in the ring.

Assumptions:
¢ Token is not lost sz violation leads to stall.
(a lost token can be recovered by a number of means - e.g. the ‘election’ scheme following;

a i pag

Distributed Systems

Distributed Systems
Distributed critical regions with a central coordinator

A global, static, central coordinator
w Invalidates the idea of a distributed system
i Enables a very simple mutual exclusion scheme
Therefore:

* A global, central coordinator is employed in some systems ... yet ...
e ... if it fails, a system to come up with a new coordinator is provided.

Distributed Systems

Distributed Systems
Electing a central coordinator (the Bully algorithm)
Any process P which notices that the central coordinator is gone, performs:

1. P sends an Election-message
to all processes with higher process numbers.

2. P waits for response messages.

= If no one responds after a pre-defined amount of time:
P declares itself the new coordinator and sends out a Coordinator-message to all.

w If any process responds,
then the election activity for P is over and P waits for a Coordinator-message

All processes P; perform at all times:

o If P; receives a Election-message from a process with
a lower process number, it responds to the originating process
and starts an election process itself (if not running already).

92020 Une K. Austealian National University 6 of 753 (chaper 5 “Distributed Sysiems” up [0 page 641)

Distributed Systems

Distributed Systems
Distributed states

w How to read the current state of a distributed system?

30 35 40

This “god’s eye view” does in fact not exist.

Uwe R. Zimmer, The Ausialian National
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Distributed Systems
Distributed states Distributed states
> How to read the current state of a distributed system? 1> How to read the current state of a distributed system?

A consistent global state (snapshot) is define by a unique division into:
35 ALEl El | : Ol 30 ﬁ !=
%’ 35 | 36 f 37 "2

I IE E AN % g 5 0 [ 5 ¥ 3 B 5
Instead: some entity probes and collects local states. Instead: some entity probes and collects local states. * “The Future” F (events after the snapshot):
1= What state of the global system has been accumulated? 1 What state of the global system has been accumulated?

(eq€ERNN(eg~e)=e EF
1 Connecting all the states to a global state.

* “The Past” P (events before the snapshot):

(e €EP)A (e~ e) > e EP

©2020 Uwe R. Zimmer, The Ausialian National University page 568 of 758 (chapter 8: “Distributed Systems” up to page 641 ©2020 Uwe R. Zimmer, The Austalian National University page 569 of 758 (chapter 8: “Disributed Systems” up to page 641) ©2020 Uwe R. Zimmer, The Ausiralian National University

page 570 of 758 (chapter 8: “Distributed Systems” up to page 641
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Distributed Systems
Distributed states Snapshot algorithm
w How to read the current state of a distributed system? = How to read the current state of a distributed system?

Observer-process P, (any process) creates a snapshot token t; and saves its local state 5.
Py sends t, to all other processes.
\/ P; which receive t, (as an individual token-message, or as part of another message):
3 % 1 * Save local state s; and send s; to Py,

= c > . 7 ¢ Attach ¢ to all further messages, which are to be sent to other processes.
3 0 is ) % B 3 & i
. . * Save t; and ignore all further incoming t's.
Instead: some entity probes and collects local states. Instead: some entity probes and collects local states.
1= What state of the global system has been accumulated? 1 What state of the global system has been accumulated?

w Sorting the events into past and future events.

7/ P; which previously received t; and receive a message m without t:
w Event in the past receives a message from the future!
Division not possible i Snapshot inconsistent!

ibuted Systems” up to page 641

* Forward m to P (this message belongs to the snapshot).
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Distributed Systems Distributed Systems Distributed Systems
Distributed states Distributed states Distributed states
= Running the snapshot algorithm: wr Running the snapshot algorithm:

= Running the snapshot algorithm:

* Observer-process Py (any process) creates a snapshot token t; and saves its local state s. * VP;which receive t (as an individual token-message, or as part of another message): * /P;which previously received t, and receive a message m without t:
¢ Pysends t to all other processes. * Save local state s; and send s; to Py « Forward m to P (this message belongs to the snapshot).

* Attach ¢ to all further messages, which are to be sent to other processes.

* Save t; and ignore all further incoming t's.
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w Running the snapshot algorithm:

¢ VP;which receive t, (as an individual token-message, or as part of another message):

¢ Save local state s; and send s; to Py
¢ Attach t to all further messages, which are to be sent to other processes.
* Save t; and ignore all further incoming t's.

e 8 “Distributed Systems”
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Distributed states

1 Running the snapshot algorithm:

1w Sorting the events into past and future events.

i Past and future events uniquely separated i Consistent state

Distributed Systems

Distributed Systems
A distributed server (load balancing)

immer, The Australian Nations
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Distributed states

= Running the snapshot algorithm:

 Savet and ignore all further incoming t,'s.
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Snapshot algorithm

Termination condition?

Either

* Make assumptions about the communication delays in the system.

¢ Count the sent and received messages for each process (include this in the lo-
cal state) and keep track of outstanding messages in the observer process.

Distributed Systems

Distributed Systems
A distributed server (load balancing)

Ring of servers

Austealian National University

Distributed Systems

Distributed Systems
Distributed states

i Running the snapshot algorithm:

>
P 35 vl o za 37 3 |
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* Finalize snapshot

Distributed Systems

Distributed Systems
Consistent distributed states
Why would we need that?
* Find deadlocks.
* Find termination / completion conditions.
e ... any other global safety of liveness property.
¢ Collect a consistent system state for system backup/restore.

e Collect a consistent system state for further pro-
cessing (e.g. distributed databases).

Distributed Systems
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A distributed server (load balancing)

Send_To_
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Distributed Systems
A distributed server (load balancing)

Contention
messages

Distributed Systems

Distributed Systems
A distributed server (load balancing)

task body Print_Server is
begin
loop
select
accept Send_To_Server (Print_Job : in Job_Type; Job_Done : out Boolean) do
if not Print_Job in Turned_Down_Jobs then
if Not_Too_Busy then
Applied_For_Jobs := Applied_For_Jobs + Print_Job;
Print_Job
requeue
else
Turned_Down_Jobs := Turned_Down_Jobs + Print_Job;
end if;
end if;
end Send_To_Server;
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A distributed server (load balancing)

Job.

er 8 “Distributed Systems* up [0 page

Distributed Systems

accept Contention (Print_Job : in Job_Type; Server_Id : in Task_Id) do
if Print_Job in AppliedForJobs then
if Server_Id = Current_Task then
(Print_Job);
elsif Server_Id > Current_Task then
(Print_Job);
(Print_Job; Server_Id);
else
null; -- removing the contention message from ring
end if;
else
Turned_Down_Jobs := Turned_Down_Jobs + Print_Job;
(Print_Job; Server_Id);
end if;
end Contention;
or
terminate;
end select;
end loop;
end Print_Server;
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A distributed server (load balancing)

with Ada.Task_Identification; use Ada.Task_Identification;
task type Print_Server is

entry Send_To_Server (Print_Job : in Job_Type; Job_Done : out Boolean);
entry Contention (Print_Job : in Job_Type; Server_Id : in Task_Id);

end Print_Server;

Distributed Systems

Distributed Systems
Transactions

= Concurrency and distribution in systems
with multiple, interdependent interactions?

w Concurrent and distributed
client/server interactions
beyond single remote procedure calls?

we R. Zimmer, The Ausiralian National University page 591 of 758 (chapter 5: “Distributed Systems” up to page 641,
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Transactions

Definition (ACID properties):

* Atomicity: All or none of the sub-operations are performed.
Atomicity helps achieve crash resilience. If a crash occurs, then it is possible
to roll back the system to the state before the transaction was invoked.
Consistency: Transforms the system from one consistent state to another consistent state.
Isolation: Results (including partial results) are not revealed unless and until
the transaction commits. If the operation accesses a shared data object,
invocation does not interfere with other operations on the same object.
Durability: After a commit, results are guaranteed to persist,
even after a subsequent system failure.
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Distributed Systems

Distributed Systems
Transactions

|
. . Atomic operatlons N e
Definition (ACID properties): | | spanning ng multiple le processes? | | r How to ensure consmuncy

| ina adls(nbuleds stel m
* Atomicity: All or none of the sub-operations are performed L 15T <

Atomicity helps achieve crash resilience. If a crash occurs, then it is posslble
to roll back the system to the state before the transaction was invoked.

¢ Consistency: Transforms the system from one consistent state to another consistent state.

« Isolation: Results (including partial results) are not revealed unless and until
the transaction commits. If the operation accesses a shared data object, .
invocation does not interfere with other operations on the same object. rShadOW copies
i AP

* Durability: After a commit, results are guaranteed to persist,
even after a subsequent system failure.

— e Actual \solanon and L ————
What hardware do W efficient concurrency?  Actual isolation or the
need t0. assume? " appearance of isolation? J
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Distributed Systems
Transactions

A closer look inside transactions:

Transactions consist of a sequence of operations.

If two operations out of two transactions can be performed in any order with the
same final effect, they are commutative and not critical for our purposes.

Idempotent and side-effect free operations are by definition commutative.
All non-commutative operations are considered critical operations.

Two critical operations as part of two different transactions while
affecting the same object are called a conflicting pair of operations.
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Transactions

A closer look at multiple transactions:

* Any sequential execution of multiple transactions
will fulfil the ACID-properties, by definition of a single transaction.

* A concurrent execution (or ‘interleavings’) of multiple transactions
might fulfil the ACID-properties.

w If a specific concurrent execution can be shown to be equivalent to a specific sequential
execution of the involved transactions then this specific interleaving is called ‘serializable’.

w If a concurrent execution (‘interleaving’) ensures that no transaction ever encounters
an inconsistent state then it is said to ensure the appearance of isolation.

758 (chapter 8: “Distributed Systems” up to page 641)
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Distributed Systems
Serializability

wr Serializable
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Distributed Systems

Achieving serializability

i For the serializability of two transactions it is necessary and sufficient
for the order of their invocations
of all conflicting pairs of operations to be the same
for all the objects which are invoked by both transactions.

(Determining order in distributed systems requires logical clocks.)

©2020 Uwe . Zimmer, The Au 8 “Distributed Systems” up 1o pag
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Serializability

Order

Wiice (8) I

* Two conflicting pairs of operations with different orders of executions.

= Not serializable.
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Serializability

Order

Two conflicting pairs of operations with the same order of execution.

©2020 Uwe R. Zimmer, The Ausiralian National University
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[OB]  Vrite (A)

Distributed Systems
Serializability

Order

Read (C) [l Write (B)

* Three conflicting pairs of operations with the same order of execution

(pair-wise between processes).

¢ The order between processes also leads to a global order of processes.

©2020 Uwe R. Zimmer, The Ausiralian National University
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Distributed Systems
Serializability

Order

* Three conflicting pairs of operations with the same order of execution
(pair-wise between processes).

¢ The order between processes also leads to a global order of processes.

w Serializable
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Serializability

* Three conflicting pairs of operations with the same order of execution
(pair-wise between processes).

* The order between processes also leads to a global order of processes.

i Serializable
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Serializability

Py

Order

—Read (©) Werite (B)
S Virie (5 I

* Three conflicting pairs of operations with the same order of execution

(pair-wise between processes).

¢ The order between processes does no longer lead to a global order of processes.

wr Not serializable

page 603 o 7
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Achieving serializability

i For the serializability of two transactions it is necessary and sufficient
for the order of their invocations
of all conflicting pairs of operations to be the same
for all the objects which are invoked by both transactions.

 Define: Serialization graph: A directed graph;
Vertices i represent transactions T;;
Edges T; — T represent an established global order dependency
between all conflicting pairs of operations of those two transactions.

i For the serializability of multiple transactions it is
necessary and sufficient
that the serialization graph is acyclic.
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Distributed Systems
Transaction schedulers

Three major designs:

* Locking methods:
Impose strict mutual exclusion on all critical sections.

¢ Time-stamp ordering:
Note relative starting times and keep order dependencies consistent.

¢ “Optimistic” methods:
Go ahead until a conflict is observed - then roll back.
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Serializability

* Three conflicting pairs of operations with the same order of execution
(pair-wise between processes).

i Serialization graph is acyclic.

& Serializable
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Transaction schedulers — Locking methods

Locking methods include the possibility of deadlocks = careful from here on out ...

e Complete resource allocation before the start and release at the end of every transaction:
w This will impose a strict sequential execution of all critical transactions.

« (Strict) two-phase locking:
Each transaction follows the following two phase pattern during its operation:

¢ Growing phase: locks can be acquired, but not released.

* Shrinking phase: locks can be released anytime, but not acquired (two phase locking)
or locks are released on commit only (strict two phase locking).

& Possible deadlocks

w Serializable interleavings

& Strict isolation (in case of strict two-phase locking)

Semantic locking: Allow for separate read-only and write-locks

w Higher level of concurrency (see also: use of functions in protected objects)
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Serializability

Order

£ Write (C)

* Three conflicting pairs of operations with the same order of execution
(pair-wise between processes).

w Serialization graph is cyclic.
= Not serializable
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Distributed Systems
Transaction schedulers — Time stamp ordering

Add a unique time-stamp (any global order criterion) on every transaction upon start.
Each involved object can inspect the time-stamps of all requesting transactions.

* Case 1: A transaction with a time-stamp /ater than all currently active transactions applies:
w the request is accepted and the transaction can go ahead.
* Alternative case 1 (strict time-stamp ordering):
= the request is delayed until the currently active earlier transaction has committed.
* Case 2: A transaction with a time-stamp earlier than all currently active transactions applies:
& the request is not accepted and the applying transaction is to be aborted.

w Collision detection rather than collision avoidance
& No isolation e Cascading aborts possible.
w Simple implementation, high degree of concurrency
—also in a distributed environment, as long as a global event order (time) can be supplied.
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Transaction schedulers — Optimistic control

Three sequential phases:

1. Read & execute:
Create a shadow copy of all involved objects and
perform all required operations on the shadow copy and locally (i.e. in isolation).

2. Validate:
After local commit, check all occurred interleavings for serializability.

3. Update or abort:

3a. If serializability could be ensured in step 2 then all results of involved transactions
are written to all involved objects - in dependency order of the transactions.
3b. Otherwise: destroy shadow copies and start over with the failed transactions.

page 610 o1 758 (chapier 5
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Transaction schedulers — Optimistic control

Three sequential phases: [ p
How to create a consiste | . N
| - Full isolation and

maximal concurrency!

mcopy?‘ —_—
. Read & execute: — -
Create a shadow copy of all involved objects and -
perform all required operations on the shadow copy and locally (i.e. in isolation).
. Validate:

After local commit, check all occurred interleavings for serializability.

. Update or abort: How to update all objects consistently?
3a. If serializability could be ensured in step 2 then all résults of INVOIVed transactions™
are written to all involved objects — in dependency order of the transactions.
3b. Otherwise: destroy shadow copies and start over with the failed transactions.

[ Aborts happen after everything
has been committed locally. |
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Distributed transaction schedulers
Three major designs:

¢ Locking methods:
Impose strict mutual exclusion on all critical sections.

¢ Time-stamp ordering:
Note relative starting times and keep order dependencies consistent.

¢ “Optimistic” methods:
Go ahead until a conflict is observed — then roll back.

1> How to implement “ "and " operations
in a distributed environment?

page 61207758
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Two phase commit protocol Two phase commit protocol Two phase commit protocol

Start up (initialization) phase Start up (initialization) phase Start up (initialization) phase

Data

Determine

Ring of servers N
s coordinator

Server

Distributed

Transaction
Server

617
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Distributed Systems Distributed Systems Distributed Systems
Two phase commit protocol Two phase commit protocol Two phase commit protocol

Start up (initialization) phase Start up (initialization) phase Start up (initialization) phase

- P

@ Determine Setup & Start Setup & Start
coordinator operations operations

DL @

Distributed Syste Distributed Systems Distributed Systems

Distributed Systems Distributed Systems Distributed Systems
Two phase commit protocol Two phase commit protocol Two phase commit protocol

Phase 1: Determine result state Phase 2: Implement results Phase 2: Implement results

Coordinator requests
and assembles votes:
"Commit" or "Abort"

Coordinator instructs

0" "
everybody to "Commi Server

Server



- Distributed Systems

Distributed Systems

623
-'-ﬁ - -
_L"‘ - Distributed Systems

- Distributed Systems

Distributed Systems

Distributed Systems

Two phase commit protocol

Phase 2: Implement results

Two phase commit protocol

Phase 2: Implement results
@ Everybody reports
"Committed" @

Two phase commit protocol
or Phase 2: Global roll back

Coordinator instructs

|
everybody to "Abort" @

Everybody destroys
shadows

- Distributed Systen
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Two phase commit protocol Distributed transaction schedulers

or Phase 2: Global roll back

Everybody destroys
shadows

Two phase commit protocol

Phase 2: Report result of distributed transaction

Coordinator reports toclient: @ g w

"Committed" or"Aborted"

Evaluating the three major design methods in a distributed environment:

¢ Locking method No aborts.
Large overheads; Deadlock detection/prevention required.

e Time-stamp orderin Potential aborts along the way.
Recommends itself for distributed applications, since decisions
are taken locally and communication overhead is relatively small.

¢ “Optimistic” method: orts or commits at the very end.
Maximizes concurrency, but also data replication.

Distributed Systen Distributed Systems Distributed Systen
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Redundancy (replicated servers) Redundancy (replicated servers) Redundancy (replicated servers)

Premise: initialization) ph

A crashing server computer should not compromise the functionality of the system Stages of each server:
(full fault tolerance)
Assumptions & Means:

* k computers inside the server cluster might crash without losing functionality. Job message received by-all active servers

Received Deliverable
* The server cluster can reorganize any time (and specifically after the loss of a computer). - i r

Job processed locally

Job message received locally
¢ The server is described fully by the current state and the sequence of messages received. -
K Processed
wr State machines: we have to implement consistent state adjustments (re-organization)

and consistent message passing (order needs to be preserved).

Ring of identical
servers

w Hot stand-by components, dynamic server group management.

[Schneider199
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Redundancy (replicated servers)

Start-up (initialization) phase

Determine

coordinator @

Distributed Systems

Distributed Systems

Coordinator sends
job both ways

Distributed Syste

Distributed Systems
Redundancy (replicated servers)

eside

All server detect
two job-messages
= everybody
processes job
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Redundancy

Start-up (initializat

Coordinator
determined
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Redundancy (replicated servers)
istribute jo

Everybody received job
(but nobody
knows that)
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Redundancy (replicated servers)

rdinator processes

Coordinator also
received two messages
and processes job
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Distributed Systems

Send Job

s Distributed Systems

Distributed Systems

Redundancy (replicated servers)
ing start

First server detects
two job-messages
5 processes job

Distributed Systems

Distributed Systems
Redundancy (replicated servers)

Coordinator delivers
his local result
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Summary

Distributed Systems

Event: Server crash, new servers joining, or current servers leaving. Networks

e OS5, tc

. S Practical network standards
Server re-configuration is triggered by a message to all * Practicalnetwork standards
(this is assumed to be supported by the distributed operating system). e Time

¢ Synchronized clocks, virtual (logical) times

Each server on reception of a re-configuration message:
e Distributed critical regions (synchronized, logical, token ring)
. Wait for local job to complete or time-o
Store local consistent state S;.

¢ Distributed systems

3. Re-organize server ring, send local state around the ring. * Elections

. If a state 5/ with j > iis received then S Distributed states, consistent snapshots
. Elect coordinator Distributed servers (replicates, distributed process

Transactions (ACID properti rializable interlea

g, distributed commits)
6. Enter ‘Coordinator-’ or ‘Replicate-mode’

gs, transaction schedulers)







