#d1-0d1 OSI dAN 4D sojdwexy
uonR9Iap 10443 ‘GuixadiNW ‘|0I3U0I-MO|4 ‘UOHBUILLISY STX dl s9jdurexy
uopRUIWIBY JUSWSSEUBW ‘JUDWIYSI[GRISS UOISSDS [SUOIUNS o ‘JuswaSeurwW QUBWIYSIGEISS UORIBUUOY) SUOIUNS [03u02 uonsaduod ‘Suiydnms ‘Suissaippe ‘Sunnoy suondun e

DdY :sojdwiexy e

swes8oud uonedrjdde usamiaq angojeip ay) Jo UONBUIPIOOD) :9DIAIDS o S)SOU| U99M]A] BIEP JO JDJSUBI] :DDIAIDS e Sd0m)au ay) apisul s3xded JO 19)SURL] 190IAIS e

19Ae7 U0ISSas :¢ J9Ae7 podsuesy p 19Ae7 JIoMION :€

spaepues % sjod0jo.d yiomoN spaepuejs ¥ sjod0joid yiomjoN spaepues % sjodo0jo.id yiomaN

swiaysAs painqrisiq SwiaysAs painqLisiq Swia1sAs painqrisiq

' (johuod [9As) Ul D11
‘(jouueyd-Q ‘@1npadoid ssadde yulj) d-dv1
‘(paouejeq ‘@1npadoid ssadde yul|) g-dv1 (s1on1dwe x s1010939p ‘0|qed) J2ulayd] ‘LT°X sojdwexy e
(1020301d j03U0d Y| BIEP [9A9] YBIY) DTAH s9/dwexy sjeuSis [eondo 10 [BD14309]9 0L SH{ JO UOISISAUOD) [SUOIUNS e

. , . JiomaN
|0J3UO0D MO|} ‘UOI}D3II0D 104ID CO:mN_CO‘_r_uC\»m suonound e]9UUBYD UOHEDIUNWWOD B 19A0

3Ul] B JI9AO0 S9WERIY JO 19)SUBL) D|qRI[DY :92IAI9S o Weal)s }Iq MEJ © JO UOISSIWUSUBL] :9DIAI9S e

19Ae7 yur ejeq :g 19Ae7 [esisAyd :|L

spaepueys % sjod0jo.d yiomjaN spaepuejs ¥ sjod0joid yiomjoN spaepues % sjod0jo.d yiomjaN

swiaysAs painqrisiq - SwiaysAs painqLisiq - swiaysAs painqrisiq

*++ sjooojoud mau SuiuSisap pue Sunsixa Suiquosep uaym

‘pasn Ajapim a1e A3ojouway pue s}daduod sy Ing m«wwmm_mﬂmﬂmwwm ANSIoAIUN [BUONEN UBI[ensNY YL - JSWIWIZ "y dMN

Malpuy ‘wnequaue]

1Ny ut 19ymAue pajuswa|dwi ApreH [eoozwnequauer] mccwum\Aw painglisid

L00T I[eH @dnuaid
swiSipeseq pue sajdid 9007 |[eH-2211Ud1d ‘UoIIPa Pu0das
PajUBIIO UOIBUUOD) o ULl :SwasAs paynqLisiq SunwuwresSouq painqiiy
: : MaIpuy ‘wnequauel -sI pue Jua.1nduoy) Jo saydiduLid
21njo9a3ydie ‘_w\»m_ A [LOOZwnequaue|] W ‘Uy-uag
3 61€-66¢ "dd (1) 2T oA e
ul uoljeziues. uonezipiepue euoneulaju
Rwr 1(OSI) uonezi O uoRnezipiepuelg [euol n un_ 0661 sAoaIng Sunndwiod WO 8661 (UONIPD PUZ) P11
9y} AQ [9pOW 9dUd19)3l (ISO) UOHIBUUO0IIRU] SWIRYSAS UdO Jeri0iny e :yorosdde suryorw a1els sy} uewduo7 A3|sap uosIppy
Q) se pazipiepuels 8uisn saoinies Juesajo)-yney Sunuawayduiy swasAs Jua1nduo)y
) palq 4aplauyds [‘uodeg
[066L+9p1auydS] [866Lu0d®g]
[opow 92ua.4ajal Jiomiau SO

spaepueys % sjodojo.d yiomjaN J9)deyd siy) 10§ sa2udIIY

swaysAs painqrisiq - SwiaysAs painqLisiq - 020¢ A2Ud11n2U0D) % SYIOMIBN ‘SWIISAS

:L.Q m?%t&w » &ouEEm Mte_\:mz -

swiaysAs painqrisiq

LAZHOESIV

160! ssN
SSN

SSN fewsaiu| Joweush | i
% [ozms oei pneg s

Jejjonuoo
uopedjunwiwon

_‘Mm:c uijul ue
| 03 parpauuod eleq

o v

— feolsa
1040 VHdO
N300

osin
ISON

J01j08U00 OHO

swiaysAs painqrisiq

Suoum o} A|puaLiy Jou 394 “
‘SI9ALIP

i2x *9AIAINS UBD S3PIS Y30

Oud swenx3 Jeym Aq paniwi| Ajuo paadg =

{pJepue)s [eWIO) B USAD JOU S,
pue *** s3d1A9p Jo suol|jized Aq pasn

(1dS) 92e441u] [esoydLIdg [eLIdS

spiepuejs MNQUNZO\-Q JiompaN

swaysAs painqrisiq

£anes

‘\ uodn pasaide aq
0y paau Ajejod 7
7 pue aseyd y>

spaepuejs % sj0d0jo.d y10mjoN

SwiaysAs painqLisiq

sjod0jo.1d A1anodsip ‘dos ‘yss ‘dyy ‘jlew 1oy s|dy :sojdwexy e
oyads go/uonedddy :suonound e

sweioud uonedrjdde 10§ SS900€ YIOMION :90/AIOS e

19Ae7 uoneoyddy :/

s10ke1 YIOMION ISO

spaepuejs ¥ sjod0)oid yi0mjoN

SwiaysAs painqLisiq

zoneis

1012395 9AR|S

ISOW <€ ISOW
OSIW > OSIN

a1e1 300D J|qIXay ‘D4IM-p ‘Xa1dnQ
(1dS) 93ej193u [19ydLIdd [BLIDS
spaepuejs p sjos0jo4d yi0mjaN

swiaysAs painqrisiq

uondAnua dnd ‘UoIsIaAu0d apod OS] :sojdwexy e

S92IAIP [eNIA ‘U0NdAIDUS ‘UOISIBAUOD BPO)) :SUOIOUNS e

A1dua pue Suipod Juapuadapur wiojeld jo uoisiroig

spaepueys % sjodojo.d yiomjaN

swiaysAs painqgrisiq

190IAIDS »

u
9AOQE U} JO BUON

(sss@) wnaydads peaads aouanbag-1aaq =
(VD/VWSD) 2UBPIOAY UOISI[[0D YIM Ss3d0Y [dijnyy asudg JaLiae) =

(anoiaeyaq Surwn sy 0} 10adsau y
dnsIUIWIRPP S1 SuL UL ‘AD/VINSD @ "}as saunjeay paisinbai ay) aAaiyoe 0} d|qissod aie

s19Ae| |SO Y10031an|g pue L1'Z0g JO SUOHBUIqUOD) =1

S pue €708 3331 03 uoneal 1A

bas a1npnaselyur ou) Suniomiau S0y-py 111D ZHD 09 4940 sdgD 001 03 dn 10y pauBisap aue spiepuels aaninyg

Sury uayol Wl “(sdqw | > AJ[ea1dA)) sejel eyep 1omo

|ediseq Inq quaiap ApySiys are suonedyads

21n1oa)iydse Sury UaOL W] 2Y) J3)Je PA|[9POW SI pIEpUE)S 708 331

Wpueq ZHW 091 JB 19111 ZHD G 19A0 (2BL1708) sdqw 08/ 031 dn spiepue)s Juaiin)
yipimpueq ZHW 3 8 A0 sdqin G ye a8esn |

uondwinsuod somod 1omoT {(ZHD+'7 49A0 SAqW Z-1) £661L Ul L1708 3331 Se piepue)s 1siiy

5,02 9Y) ut Wg| Aq padojaaap , Sury uayoy,

NJeay JUIDYIP YUM 5,06 dY) ul pad MIBU DR [E: ,06 943 ut padojanap (NVIM) %

(1a@4) 92e4191u] BIRQ PEINQLISI 94q14
/ §°08 3331 / Sury udxjol y10019n|g

spaepuejs &QUP‘Qh& J1ompaN spiepuejs p &QUO::Q JIoMm)aN

LL°C08 3371 / IPuioYlg

spaepues % sjodo0jo.id yiomaN

Swia1sAs painqrisiq

swiaysAs painqrisiq SwiaysAs painqLisiq

ayoeds-zpay (e 1B ki

ods-£209 3331 (o) sse00y epey i eeq

oyoeds-208 3331 wor-ov L womN

wodsue

uosssas

(010Z ®q€208 3331) SdgD 001 031 dn spiepuels Apuaiind
1e sdopysap 1sc pasn syiod ajqed saddod (qeg-zog) sdqo | Apuaiind

[r—

o sdqw0L) €961 Ul €708 3371 SB prepuels)

ssake] JHoMPaN 150 sods sdqwoL

10M}DU BDJE [BD07]
DVIW DV ‘AHd :uoledl ISO 2-D! DVW ‘AHd :uoneja! SO

£°C08 3331 / wuiayly €208 3331 / 1UIBY}

spaepueys % sjod0jo.d yiomjaN spaepuejs ¥ sjod0joid yiomjoN

£°C08 3331 / Uyl

spaepues % sjod0jo.d yiomjaN

swiaysAs painqrisiq SwiaysAs painqLisiq swiaysAs painqrisiq

3 2 Jeoishud [eoishud Jeoishug
§708 3331 L §708 3331 L n
1aa4 Sury uayoL. j[eLe207 €7083331 [e215Ayq. [e215Ayd 1aa4 Sury uaoL HleLed0] €708 3331 [e215Ayd. ,mu,m\,cn—
|0501014 55000y | 0001014 50y | jo0or01g sseooy. | jod01014 ssad0y o 10301014 ssa0y | (0901014 sseooy | jo0on01g ssaody. | 020101 sseaoy s i ereq .- ojuy eieg
I ARLIAAH, Jur yeLusyoL Aur yeL 0] Aur fELoY 0N Pl == AU YELIAA ur yeLuaoL Hur YL E20T urT YRLIBY HoMIN gl == P B
(dHVY) (001014 uonnjosay ssappy Yetalddy (dUVY) 10901014 UONN|0saY SsAIPPY A[eLalddy SOMIN o HomaN
HHOMAN SomaN
(40Q) 10901014 Aonaq weiSerea di (4aQ) 10201014 Aianjaq wesdereq di
J0201014 Jo20101d Jo20101d J001014 01 2dueuaUIEW R 10501014 | [050101d | 03q Buipuig | 1030101 Sunnoy | 1014 soueusiuieyy vodsuesy. - wodsueiy
: 5 Vodsuel) ¢ Jiodsues)
owily | uomesuen 1y | SuipuigoueN |Sunnoy paseg orepdniy| ajqes Sunnoy o3 1y | uonoesuesy 1y | sweN paseg ayepdn 1y | alqeL Sunnoy Vodsues
P B = 1 uoissag uoissag
N T T o el =
\\\\\\\ 1 uoneyuasald uoneluasalg
8 a)dd
(ddv) [020104d Buljtd Aregoiddy uonenddy uoneoddy
uopeayddy uopeanddy
d1 4210 sjje1ajddy IS0 sersiddy dI/doL IS0 IS0 di/doL IS0

erep 1osn

spaepueys % sjodojo.d yiomjaN spaepuejs ¥ sjod0)oid yi0mjoN spaepueys % sjodojo.d yiomjaN

swaysAs painqrisiq SwiaysAs painqLisiq

swiaysAs painqgrisiq

(suoneoijdde 1aindwod ul Wdd 07~ [ed1dA)

(UOI||1W-19d-SHed) Idd Se payidads uayo

h-4 ¢ L(e+1)

(e+1)= CENGEE

1Se PauIap @ YIIP 3O0|D [eWIXe

pajodye PYUp o
Ayrejnuesd [ewiuiw e S1 919Y) PUB ISUIP JOU S| DWIT) I — JJAIISIP

2le
SY00[d ,oWi-[edy,
SwasAs pajnqLysia

swiaysAs painqrisiq

jowII) [enyIIA e 9)edu) =1 SJUdAD Jo 9oudnbas uo paseg

PO ON_COLSUC\AW <1 oW} poaJeys e uo paseg

”mw_wwﬁw\:w 9AljeUId) e OM|

SwaysAs papnqLisip ur awi|
SwasAs painqrysiaq

SwiaysAs painqLisiq

(uS1sop poo8 e Jo ased ui) sasealdap ainjiey 33a|dwod Jo pooyiaI] =
$9SBAIOUI SDN|IR) [ENPIAIPUL JO POOYI[XIT =1

saanjiey [enaeq ‘¢

;uonejal [esodwa) 10 uoneds [esney) =1

aseq-awn as1dadwi Jo Juissiw 7

$19A SuOp am a1y =1

(uonesiunwwod) skejap ajqedipaidun |

swaysAs paynquysip ur euswouayd UoWwWod dWos
swapsAs painqriysiq

Swia1sAs painqrisiq

DUBWLIOYI JOPISUO)) =1
AJjiqeeds 1apisuo)) =

Apjiqerjay J1apisuo)) =

|03U0D [e43UdD Uey) Jayjes uonesddoo)) =

Awouolne [ed0] jo 9a13ap Y31y / Surpdnod-aq aAdIYDY =

eLI9LID USISap uowwo)
swasAs panqriysiq

swiaysAs painqrisiq

Aouepunpai ‘uonedijdel aing =1 3s0y) Jo duoU o
$19)SN|D 19AIDS/IUSI|D =1 UOHIUNY B JJE)S o
elep [eudd uo suonesado painqrisIq = uonduny e

Blep paiNgL3sip uo suonesado uowwo) = el

$POINQLISIP 3G UBD JeYM
SwasAs panqLysiq

SwiaysAs painqLisiq

*s201A9p SN03UaS0.2)aY Jo uoneidajul

‘d|qeeds

*21eM1JOS pue asempiey Jo Adouepunpal 0} anp Ajudajul/Appiqenas ydiy -
Buissadoud |ajjesed jo 2a18ap ySiy Ajjenuajod 0y anp aouewnopad ydiy -

“(**+ ‘ye1d 981e| © Ul SADIADP ‘WANSAS [1ew-d) uonnquysip [edisAyd Sunsixa ue sy

- Alqissod

uoneAoN

iuonnquisiq
SwasAs panqLysia

swiaysAs painqrisiq

*|013U0D UOISSas ou pue (g3 03 dn Ajuo) syaded |lews =1 ‘l1om se swiasAs Ayu8ayur y8iy pue siaindwood-1adns 0y ajqesidde ing

“sajes-ejep ySiy e [puueyDaiqi4 1o Jouiay)3 uey) sadeay) =1 ‘sAeute 98e10)s ul pasn Apsopy =1

*||om se sAeuse a8e10)s 0} a|qedijdde 1nq sia1sn pue sieyndwod-1adns ur pasn Apsop =1 ‘|oA3] uoissas ayy 0} dn siahe| Jusjeainba |SO sauyeq «

“(sa1qy [eondo jo pealsul) sajqes saddod asn sadiaep Bunsixg a|qissod syuij ejep JuaLINduod pue sa18ojodo) Auew ‘SaSSAIPPE .7 INIqR) PAYPNMS =1

“1aAe] y10m12u dY) JO slied pue 1aAe) yul-eep auy) Ajuo sauyeq e a|qeded awin-jeal DNSIUIWIRAP 1 SassaIppe /| ((Sull uayo) o) sejiwis) doo| pajeniqay =1

*(sdgD 00€ =1 7). 03 dn Ajuowwiod) aqissod syul| eJep JUSLINDUOD) o sass21ppe 7 Ju10d-0)-Ju10g =1
‘sa180j0do) DRy PAYOIMS o

“yuip sad sdqn) Gz 10§ MO|[e SPIBPURIS JUBLIND « :59180]0d0) JUBIDYJIP 9914} 10) SMO||Y »

'6661 22UIS (VL6) UOHRIDOSSY dpei] puRgIUlU| 3L} AQ Pauyad e

~juij 1ad sdqD 9| 10§ MO|[e SpIepUR)S JUBLIND «
5,06 918 9y} ul padojeaag e

661 9UIS PIEPUEIS [SNY o
*5,08 91e| 9y u1 padojera e
:s19he| [SO 03 [puueyD 21q14 jo Surddeyy

puegiuyuj 3 [ouuey) 2.4q14 [uuey) 2.q14

spaepueys % sjodojo.d yiomjaN spaepuejs ¥ sjod0jo4d yiomjoN spaepueys % sjodojo.d yiomjaN

swaysAs painqrisiq SwiaysAs painqLisiq swiaysAs painqgrisiq

==

]
e]

Distributed Systems

Distributed Systems
Synchronize a ‘real-time’ clock wi-directionan

Resetting the clock drift by regular reference time re-synchronization:

C'measured time'

Maximal clock drift § defined as:

(1+68)7 "< C(tfz :g(“) <(1+8)

‘real-time’ clock is adjusted
forwards & backwards

= Calendar time

t'realitime’

page 550 of 758 (chapter 8: “Distributed Systems” up to page 641

Distributed Systems

Distributed Systems
Distributed critical regions with synchronized clocks

Analysis
* No deadlock, no individual starvation, no livelock.
* Minimal request delay: 2L.
* Minimal release delay: L.

¢ Communications requirements per request: 2(N — 1) messages
(can be significantly improved by employing broadcast mechanisms).

¢ Clock drifts affect fairness, but not integrity of the critical region.

Assumptions:
¢ Lis known and constant = violation leads to loss of mutual exclusion.
* No messages are lost = violation leads to loss of mutual exclusion.

©2020 Uwe R. Zimmer, The Ausiralian National University page 553 of 758 (chapter 8: “Distributed Systems’

_‘i'ii—-' —
*- Distributed Systems

Distributed Systems
Synchronize a ‘real-time’ clock torward oniy)
Resetting the clock drift by regular reference time re-synchronization:

C'measured time’

Maximal clock drift § defined as:

1 _ Clty) —C(ty) _
R
‘real-time’ clock is adjusted
forwards only
= Monotonic time

trealitime’

page 551 of 758 (chapter 8: “Disributed Systems” up to page 641)

Distributed Systems

Distributed Systems
Virtual (logical) time [Lamport 1978]

a—-b=C)<Cb)

with a = b being a causal relation between a and b,
and C(a), C(b) are the (virtual) times associated with a and b

a — biff:
a happens earlier than b in the same sequential control-flow or
a denotes the sending event of message m,
while b denotes the receiving event of the same message m or
there is a transitive causal relation betweenaandb: a > e; > ... > e, > b

Notion of concurrency:
allb= —(a~>b)AN—(b~a)

©2020 Uwe . Zimmer, The Austalian Nation page 554 of 753 (chapter 8 “Disributed Sysie

]
23

Distributed Systems

Distributed Systems
Distributed critical regions with synchronized clocks

¢ Vtimes:
V received Requests: Add to local RequestQueue (ordered by time)
V received Release messages:
Delete corresponding Requests in local RequestQueue

1. Create OwnRequest and attach current time-stamp.
Add OwnRequest to local RequestQueue (ordered by time).
Send OwnRequest to all processes.

2. Delay by 2L (L being the time it takes for a message to reach all network nodes)
3. While Top (RequestQueue) # OwnRequest: delay until new message
4. Enter and leave critical region

5.Send Release-message to all processes.

Distributed Systems

Distributed Systems
Virtual (logical) time
a—b=Ca)<Cb)
Implications:

C@<ck ="
C(a =C)="?

C(a) = C(b)<C(c)=>?
Cl@<cl)<cl)="?

Distributed Systems

Distributed Systems
Virtual (logical) time
a~b=C)<Cb)
Implications:

C@ <C(b)= —(b~-a)
Cl@=ck)=alb

Cl@ =clb)<Clc)=7?
Cla)<cC)<Clo)=?

Distributed Systems

Distributed Systems
Virtual (logical) time
a—b=Cla<Cb)
Implications:

C@<c)=—-b-a=@@-»bV@lb)
Cl@=CcM)=allb=—=(a~b)A—(b~a)

C(a) = C(b) < C(c)=?
Cl@<c)<cl=?

Distributed Systems

Distributed Systems
Virtual (logical) time
a—- b= C(a) <C(b)
Implications:

C@<chb)=-(b-a=@-hbVlh)
Cl@=Cc)=alb=—(a>b)A—(b~ a)

C(a) = C(b) < C(c) = —(c ~ a)
C(a) < C(b) <Clc) = —(c~ a)

Distributed Systems

Distributed Systems
Virtual (logical) time

a—b=Ca<Cb)
Implications:

C@) <C()= —(b—-a)=1(~-b)V(alb)
C(@) =C() =>allb=—(a~b)A—(b~a)

Cl@=C)<Cl=—(c»a)=(@~c)Vlc)
Cl@<ch)<Cl=—(c~a)=(~-cVilo

apter 8: “Distrbuted Systems” up to page 641

]
S

Distributed Systems

Distributed Systems
Distributed critical regions with logical clocks

e V times: V received Requests:
Add to local RequestQueue (ordered by time)
Reply with Acknowledge or OwnRequest
* V times: V received Release messages:
Delete corresponding Requests in local RequestQueue

1. Create OwnRequest and attach current time-stamp.
Add OwnRequest to local RequestQueue (ordered by time).
Send OwnRequest to all processes.

2. Wait for Top (RequestQueue) = OwnRequest & no outstanding replies
3. Enter and leave critical region
4. Send Release-message to all processes.

we R

Distributed Systems

Distributed Systems
Virtual (logical) time

Time as derived from causal relations:

z T 7 P £y 5
& Events in concurrent control flows are not ordered.

i No global order of time.

chapter 8: “Disributed Systems” up.

_‘a'ib —
- Distributed Systems

Distributed Systems
Distributed critical regions with logical clocks

Analysis
¢ No deadlock, no individual starvation, no livelock.
¢ Minimal request delay: N — 1 requests (1 broadcast) + N — 1 replies.
* Minimal release delay: N — 1 release messages (or 1 broadcast).

e Communications requirements per request: 3(N — 1) messages
(or N —1 messages + 2 broadcasts).

¢ Clocks are kept recent by the exchanged messages themselves.

Assumptions:
* No messages are lost = violation leads to stall.

Distributed Systems

Distributed Systems
Implementing a virtual (logical) time

1.VP:C; =0

2.VP;:
Vlocal events: C; = C; +1;
V send events: C; = C; +1; Send (message, C));
V receive events: Receive (message, C,,,); C; = max(C;,C,,) +1;

|
]
=3 Distributed Systems

Distributed Systems
Distributed critical regions with a token ring structure

1. Organize all processes in a logical or physical ring topology
2.Send one token message to one process

3.V times, Vprocesses: On receiving the token message:
1. If required the process
enters and leaves a critical section (while holding the token).
2. The token is passed along to the next process in the ring.

Assumptions:
¢ Token is not lost sz violation leads to stall.
(a lost token can be recovered by a number of means - e.g. the ‘election’ scheme following;

a i pag

Distributed Systems

Distributed Systems
Distributed critical regions with a central coordinator

A global, static, central coordinator
w Invalidates the idea of a distributed system
i Enables a very simple mutual exclusion scheme
Therefore:

* A global, central coordinator is employed in some systems ... yet ...
e ... if it fails, a system to come up with a new coordinator is provided.

Distributed Systems

Distributed Systems
Electing a central coordinator (the Bully algorithm)
Any process P which notices that the central coordinator is gone, performs:

1. P sends an Election-message
to all processes with higher process numbers.

2. P waits for response messages.

= If no one responds after a pre-defined amount of time:
P declares itself the new coordinator and sends out a Coordinator-message to all.

w If any process responds,
then the election activity for P is over and P waits for a Coordinator-message

All processes P; perform at all times:

o If P; receives a Election-message from a process with
a lower process number, it responds to the originating process
and starts an election process itself (if not running already).

92020 Une K. Austealian National University 6 of 753 (chaper 5 “Distributed Sysiems” up [0 page 641)

Distributed Systems

Distributed Systems
Distributed states

w How to read the current state of a distributed system?

30 35 40

This “god’s eye view” does in fact not exist.

Uwe R. Zimmer, The Ausialian National

Distributed Systems : Distributed Systems Distributed Systems
Distributed Systems Distributed Systems
Distributed states

Distributed Systems
Distributed states Distributed states
> How to read the current state of a distributed system? 1> How to read the current state of a distributed system?

A consistent global state (snapshot) is define by a unique division into:
35 ALEl El | : Ol 30 ﬁ !=
%’ 35 | 36 f 37 "2

I IE E AN % g 5 0 [5 ¥ 3 B 5
Instead: some entity probes and collects local states. Instead: some entity probes and collects local states. * “The Future” F (events after the snapshot):
1= What state of the global system has been accumulated? 1 What state of the global system has been accumulated?

(eq€ERNN(eg~e)=e EF
1 Connecting all the states to a global state.

* “The Past” P (events before the snapshot):

(e €EP)A (e~ e) > e EP

©2020 Uwe R. Zimmer, The Ausialian National University page 568 of 758 (chapter 8: “Distributed Systems” up to page 641 ©2020 Uwe R. Zimmer, The Austalian National University page 569 of 758 (chapter 8: “Disributed Systems” up to page 641) ©2020 Uwe R. Zimmer, The Ausiralian National University

page 570 of 758 (chapter 8: “Distributed Systems” up to page 641

Distributed Systems : Distributed Systems Distributed Systems
Distributed Systems Distributed Systems
Distributed states

Distributed Systems
Distributed states Snapshot algorithm
w How to read the current state of a distributed system? = How to read the current state of a distributed system?

Observer-process P, (any process) creates a snapshot token t; and saves its local state 5.
Py sends t, to all other processes.
\/ P; which receive t, (as an individual token-message, or as part of another message):
3 % 1 * Save local state s; and send s; to Py,

= c > . 7 ¢ Attach ¢ to all further messages, which are to be sent to other processes.
3 0 is) % B 3 & i
. . * Save t; and ignore all further incoming t's.
Instead: some entity probes and collects local states. Instead: some entity probes and collects local states.
1= What state of the global system has been accumulated? 1 What state of the global system has been accumulated?

w Sorting the events into past and future events.

7/ P; which previously received t; and receive a message m without t:
w Event in the past receives a message from the future!
Division not possible i Snapshot inconsistent!

ibuted Systems” up to page 641

* Forward m to P (this message belongs to the snapshot).

©2020 Uwe . Zimmer, The Austalian N

buted Systems” up to page 641

Distributed Systems Distributed Systems Distributed Systems
Distributed Systems Distributed Systems Distributed Systems
Distributed states Distributed states Distributed states
= Running the snapshot algorithm: wr Running the snapshot algorithm:

= Running the snapshot algorithm:

* Observer-process Py (any process) creates a snapshot token t; and saves its local state s. * VP;which receive t (as an individual token-message, or as part of another message): * /P;which previously received t, and receive a message m without t:
¢ Pysends t to all other processes. * Save local state s; and send s; to Py « Forward m to P (this message belongs to the snapshot).

* Attach ¢ to all further messages, which are to be sent to other processes.

* Save t; and ignore all further incoming t's.

22020 Unve K. Zi

8 (chapter 3 “Distributed Sysiems

Distributed Systems

Distributed Systems
Distributed states

w Running the snapshot algorithm:

¢ VP;which receive t, (as an individual token-message, or as part of another message):

¢ Save local state s; and send s; to Py
¢ Attach t to all further messages, which are to be sent to other processes.
* Save t; and ignore all further incoming t's.

e 8 “Distributed Systems”

Distributed Systems

Distributed Systems
Distributed states

1 Running the snapshot algorithm:

1w Sorting the events into past and future events.

i Past and future events uniquely separated i Consistent state

Distributed Systems

Distributed Systems
A distributed server (load balancing)

immer, The Australian Nations

Distributed Systems

Distributed Systems
Distributed states

= Running the snapshot algorithm:

 Savet and ignore all further incoming t,'s.

page 578 of 758 (chapter 8: “Distributed Systems

Distributed Systems

Distributed Systems
Snapshot algorithm

Termination condition?

Either

* Make assumptions about the communication delays in the system.

¢ Count the sent and received messages for each process (include this in the lo-
cal state) and keep track of outstanding messages in the observer process.

Distributed Systems

Distributed Systems
A distributed server (load balancing)

Ring of servers

Austealian National University

Distributed Systems

Distributed Systems
Distributed states

i Running the snapshot algorithm:

>
P 35 vl o za 37 3 |

¥ —
o ekl E9 EA B
=TT
- N

* Finalize snapshot

Distributed Systems

Distributed Systems
Consistent distributed states
Why would we need that?
* Find deadlocks.
* Find termination / completion conditions.
e ... any other global safety of liveness property.
¢ Collect a consistent system state for system backup/restore.

e Collect a consistent system state for further pro-
cessing (e.g. distributed databases).

Distributed Systems

5 “Distributed Sysiems” up 10 page 641)

Distributed Systems
A distributed server (load balancing)

Send_To_

Distributed Systems

Distributed Systems
A distributed server (load balancing)

Contention
messages

Distributed Systems

Distributed Systems
A distributed server (load balancing)

task body Print_Server is
begin
loop
select
accept Send_To_Server (Print_Job : in Job_Type; Job_Done : out Boolean) do
if not Print_Job in Turned_Down_Jobs then
if Not_Too_Busy then
Applied_For_Jobs := Applied_For_Jobs + Print_Job;
Print_Job
requeue
else
Turned_Down_Jobs := Turned_Down_Jobs + Print_Job;
end if;
end if;
end Send_To_Server;

©2020 Uwe R. Zimmer, The Ausiralian National University age 569 of 758 (chapter 5: “Distributed Systems” up to page 641

Distributed Systems

Distributed Systems
A distributed server (load balancing)

Job.

er 8 “Distributed Systems* up [0 page

Distributed Systems

accept Contention (Print_Job : in Job_Type; Server_Id : in Task_Id) do
if Print_Job in AppliedForJobs then
if Server_Id = Current_Task then
(Print_Job);
elsif Server_Id > Current_Task then
(Print_Job);
(Print_Job; Server_Id);
else
null; -- removing the contention message from ring
end if;
else
Turned_Down_Jobs := Turned_Down_Jobs + Print_Job;
(Print_Job; Server_Id);
end if;
end Contention;
or
terminate;
end select;
end loop;
end Print_Server;

©2020 Uwe . Zimmer, The Austalian National University age 590 of 758 (chapier &: “Distrbuied Systen

Distributed Systems

Distributed Systems
A distributed server (load balancing)

with Ada.Task_Identification; use Ada.Task_Identification;
task type Print_Server is

entry Send_To_Server (Print_Job : in Job_Type; Job_Done : out Boolean);
entry Contention (Print_Job : in Job_Type; Server_Id : in Task_Id);

end Print_Server;

Distributed Systems

Distributed Systems
Transactions

= Concurrency and distribution in systems
with multiple, interdependent interactions?

w Concurrent and distributed
client/server interactions
beyond single remote procedure calls?

we R. Zimmer, The Ausiralian National University page 591 of 758 (chapter 5: “Distributed Systems” up to page 641,

Distributed Systems

Distributed Systems
Transactions

Definition (ACID properties):

* Atomicity: All or none of the sub-operations are performed.
Atomicity helps achieve crash resilience. If a crash occurs, then it is possible
to roll back the system to the state before the transaction was invoked.
Consistency: Transforms the system from one consistent state to another consistent state.
Isolation: Results (including partial results) are not revealed unless and until
the transaction commits. If the operation accesses a shared data object,
invocation does not interfere with other operations on the same object.
Durability: After a commit, results are guaranteed to persist,
even after a subsequent system failure.

2020 Unve K. Zimmer, The Australian National Universty a 58 (chapier buted Sysiens” up to page 641

Distributed Systems

Distributed Systems
Transactions

|
. . Atomic operatlons N e
Definition (ACID properties): | | spanning ng multiple le processes? | | r How to ensure consmuncy

| ina adls(nbuleds stel m
* Atomicity: All or none of the sub-operations are performed L 15T <

Atomicity helps achieve crash resilience. If a crash occurs, then it is posslble
to roll back the system to the state before the transaction was invoked.

¢ Consistency: Transforms the system from one consistent state to another consistent state.

« Isolation: Results (including partial results) are not revealed unless and until
the transaction commits. If the operation accesses a shared data object, .
invocation does not interfere with other operations on the same object. rShadOW copies
i AP

* Durability: After a commit, results are guaranteed to persist,
even after a subsequent system failure.

— e Actual \solanon and L ————
What hardware do W efficient concurrency? Actual isolation or the
need t0. assume? " appearance of isolation? J

page 593 of 753 (chapter 5 “Disributed Sysiems” up 1o page 641)

Distributed Systems

Distributed Systems
Transactions

A closer look inside transactions:

Transactions consist of a sequence of operations.

If two operations out of two transactions can be performed in any order with the
same final effect, they are commutative and not critical for our purposes.

Idempotent and side-effect free operations are by definition commutative.
All non-commutative operations are considered critical operations.

Two critical operations as part of two different transactions while
affecting the same object are called a conflicting pair of operations.

2020 Uwe R. Zimmer, The Austraian National Universiy page 594 of 758 (chapt uted Systems” up to page 641

Distributed Systems

Distributed Systems
Transactions

A closer look at multiple transactions:

* Any sequential execution of multiple transactions
will fulfil the ACID-properties, by definition of a single transaction.

* A concurrent execution (or ‘interleavings’) of multiple transactions
might fulfil the ACID-properties.

w If a specific concurrent execution can be shown to be equivalent to a specific sequential
execution of the involved transactions then this specific interleaving is called ‘serializable’.

w If a concurrent execution (‘interleaving’) ensures that no transaction ever encounters
an inconsistent state then it is said to ensure the appearance of isolation.

758 (chapter 8: “Distributed Systems” up to page 641)

Distributed Systems

Distributed Systems
Serializability

wr Serializable

©2020 Uwe R. Zimmer, The Ausiralian National University 58 (chapier 5: “Distributed Systems” up to page 641,

Distributed Systems

Distributed Systems

Achieving serializability

i For the serializability of two transactions it is necessary and sufficient
for the order of their invocations
of all conflicting pairs of operations to be the same
for all the objects which are invoked by both transactions.

(Determining order in distributed systems requires logical clocks.)

©2020 Uwe . Zimmer, The Au 8 “Distributed Systems” up 1o pag

Distributed Systems

Distributed Systems
Serializability

Order

Wiice (8) I

* Two conflicting pairs of operations with different orders of executions.

= Not serializable.

©2020 Uwe . Zimmer, The Austalian National University page 599 of 753 (chapter 5 “Disributed Sysiems” up [0 page 641)

Distributed Systems

Distributed Systems
Serializability

Order

Two conflicting pairs of operations with the same order of execution.

©2020 Uwe R. Zimmer, The Ausiralian National University

58 (chapter 8: “Distributed Systems” up to page 641,

Distributed Systems

[OB] Vrite (A)

Distributed Systems
Serializability

Order

Read (C) [l Write (B)

* Three conflicting pairs of operations with the same order of execution

(pair-wise between processes).

¢ The order between processes also leads to a global order of processes.

©2020 Uwe R. Zimmer, The Ausiralian National University

page 600 of 758 (chapter 8: “Distributed Systems” up o page 641

Distributed Systems

Distributed Systems
Serializability

Order

* Three conflicting pairs of operations with the same order of execution
(pair-wise between processes).

¢ The order between processes also leads to a global order of processes.

w Serializable

page 601 of 758 (chapter 8

k. 1, The Ausialian National Us d Systems” up to page 641

Distributed Systems

Distributed Systems
Serializability

* Three conflicting pairs of operations with the same order of execution
(pair-wise between processes).

* The order between processes also leads to a global order of processes.

i Serializable

2 of 758 (chapter &: “Distrbuted Systems” up 10 pag

Distributed Systems

Distributed Systems
Serializability

Py

Order

—Read (©) Werite (B)
S Virie (5 I

* Three conflicting pairs of operations with the same order of execution

(pair-wise between processes).

¢ The order between processes does no longer lead to a global order of processes.

wr Not serializable

page 603 o 7

Distributed Systems

Distributed Systems
Achieving serializability

i For the serializability of two transactions it is necessary and sufficient
for the order of their invocations
of all conflicting pairs of operations to be the same
for all the objects which are invoked by both transactions.

 Define: Serialization graph: A directed graph;
Vertices i represent transactions T;;
Edges T; — T represent an established global order dependency
between all conflicting pairs of operations of those two transactions.

i For the serializability of multiple transactions it is
necessary and sufficient
that the serialization graph is acyclic.

2020 Uwe R. Zirmer, The Australian National U page 604 of 758 (chapter 8: “Distibuted Systems” up to page 64

Distributed Systems

Distributed Systems
Transaction schedulers

Three major designs:

* Locking methods:
Impose strict mutual exclusion on all critical sections.

¢ Time-stamp ordering:
Note relative starting times and keep order dependencies consistent.

¢ “Optimistic” methods:
Go ahead until a conflict is observed - then roll back.

©2020 Uwe R. Zimmer, The Ausiralian National University page 607 of 758 (chapter 5: “Distributed Systems” up to page 641

Distributed Systems

Distributed Systems
Serializability

* Three conflicting pairs of operations with the same order of execution
(pair-wise between processes).

i Serialization graph is acyclic.

& Serializable

©2020 Uwe . Zimmer, The Au ion age 605 o 751 8 “Distributed Systems” up 1o pag

_‘a'ib —
- Distributed Systems

Distributed Systems
Transaction schedulers — Locking methods

Locking methods include the possibility of deadlocks = careful from here on out ...

e Complete resource allocation before the start and release at the end of every transaction:
w This will impose a strict sequential execution of all critical transactions.

« (Strict) two-phase locking:
Each transaction follows the following two phase pattern during its operation:

¢ Growing phase: locks can be acquired, but not released.

* Shrinking phase: locks can be released anytime, but not acquired (two phase locking)
or locks are released on commit only (strict two phase locking).

& Possible deadlocks

w Serializable interleavings

& Strict isolation (in case of strict two-phase locking)

Semantic locking: Allow for separate read-only and write-locks

w Higher level of concurrency (see also: use of functions in protected objects)

©2020 Uwe . Zimmer, The Austalian National University page 608 of 753 (chapter 5 “Disributed Sysiems” up [0 page 641)

Distributed Systems

Distributed Systems
Serializability

Order

£ Write (C)

* Three conflicting pairs of operations with the same order of execution
(pair-wise between processes).

w Serialization graph is cyclic.
= Not serializable

©2020 Uwe R. Zimmer, The Ausiralian National University page 606 of 758 (chapter 8: “Distributed Systems” up to page 641

|
e

Distributed Systems

Distributed Systems
Transaction schedulers — Time stamp ordering

Add a unique time-stamp (any global order criterion) on every transaction upon start.
Each involved object can inspect the time-stamps of all requesting transactions.

* Case 1: A transaction with a time-stamp /ater than all currently active transactions applies:
w the request is accepted and the transaction can go ahead.
* Alternative case 1 (strict time-stamp ordering):
= the request is delayed until the currently active earlier transaction has committed.
* Case 2: A transaction with a time-stamp earlier than all currently active transactions applies:
& the request is not accepted and the applying transaction is to be aborted.

w Collision detection rather than collision avoidance
& No isolation e Cascading aborts possible.
w Simple implementation, high degree of concurrency
—also in a distributed environment, as long as a global event order (time) can be supplied.

©2020 Uwe R. Zimmer, The Ausiralian National University page 609 of 758 (chapter 5: “Distributed Systems” up to page 641,

Distributed Systems

Distributed Systems
Transaction schedulers — Optimistic control

Three sequential phases:

1. Read & execute:
Create a shadow copy of all involved objects and
perform all required operations on the shadow copy and locally (i.e. in isolation).

2. Validate:
After local commit, check all occurred interleavings for serializability.

3. Update or abort:

3a. If serializability could be ensured in step 2 then all results of involved transactions
are written to all involved objects - in dependency order of the transactions.
3b. Otherwise: destroy shadow copies and start over with the failed transactions.

page 610 o1 758 (chapier 5

Distributed Systems

Distributed Systems
Transaction schedulers — Optimistic control

Three sequential phases: [p
How to create a consiste | . N
| - Full isolation and

maximal concurrency!

mcopy?‘ —_—
. Read & execute: — -
Create a shadow copy of all involved objects and -
perform all required operations on the shadow copy and locally (i.e. in isolation).
. Validate:

After local commit, check all occurred interleavings for serializability.

. Update or abort: How to update all objects consistently?
3a. If serializability could be ensured in step 2 then all résults of INVOIVed transactions™
are written to all involved objects — in dependency order of the transactions.
3b. Otherwise: destroy shadow copies and start over with the failed transactions.

[Aborts happen after everything
has been committed locally. |

page 611 of 758 (chapter 5: “Disiributed Systems* up 10 pa

Distributed Systems

Distributed Systems
Distributed transaction schedulers
Three major designs:

¢ Locking methods:
Impose strict mutual exclusion on all critical sections.

¢ Time-stamp ordering:
Note relative starting times and keep order dependencies consistent.

¢ “Optimistic” methods:
Go ahead until a conflict is observed — then roll back.

1> How to implement “ "and " operations
in a distributed environment?

page 61207758

614
*- Distributed Systems - Distributed Systems

Distributed Systems Distributed Systems

Distributed Systems

Distributed Systems

Two phase commit protocol Two phase commit protocol Two phase commit protocol

Start up (initialization) phase Start up (initialization) phase Start up (initialization) phase

Data

Determine

Ring of servers N
s coordinator

Server

Distributed

Transaction
Server

617
Distributed Systems - Distributed Systems - Distributed Systems

Distributed Systems Distributed Systems Distributed Systems
Two phase commit protocol Two phase commit protocol Two phase commit protocol

Start up (initialization) phase Start up (initialization) phase Start up (initialization) phase

- P

@ Determine Setup & Start Setup & Start
coordinator operations operations

DL @

Distributed Syste Distributed Systems Distributed Systems

Distributed Systems Distributed Systems Distributed Systems
Two phase commit protocol Two phase commit protocol Two phase commit protocol

Phase 1: Determine result state Phase 2: Implement results Phase 2: Implement results

Coordinator requests
and assembles votes:
"Commit" or "Abort"

Coordinator instructs

0" "
everybody to "Commi Server

Server

- Distributed Systems

Distributed Systems

623
-'-ﬁ - -
_L"‘ - Distributed Systems

- Distributed Systems

Distributed Systems

Distributed Systems

Two phase commit protocol

Phase 2: Implement results

Two phase commit protocol

Phase 2: Implement results
@ Everybody reports
"Committed" @

Two phase commit protocol
or Phase 2: Global roll back

Coordinator instructs

|
everybody to "Abort" @

Everybody destroys
shadows

- Distributed Systen

Distributed Systems

626
_L"‘ - Distributed Systems

Distributed Systems

Distributed Systems Distributed Systems

Two phase commit protocol Distributed transaction schedulers

or Phase 2: Global roll back

Everybody destroys
shadows

Two phase commit protocol

Phase 2: Report result of distributed transaction

Coordinator reports toclient: @ g w

"Committed" or"Aborted"

Evaluating the three major design methods in a distributed environment:

¢ Locking method No aborts.
Large overheads; Deadlock detection/prevention required.

e Time-stamp orderin Potential aborts along the way.
Recommends itself for distributed applications, since decisions
are taken locally and communication overhead is relatively small.

¢ “Optimistic” method: orts or commits at the very end.
Maximizes concurrency, but also data replication.

Distributed Systen Distributed Systems Distributed Systen

Distributed Systems Distributed Systems Distributed Systems

Redundancy (replicated servers) Redundancy (replicated servers) Redundancy (replicated servers)

Premise: initialization) ph

A crashing server computer should not compromise the functionality of the system Stages of each server:
(full fault tolerance)
Assumptions & Means:

* k computers inside the server cluster might crash without losing functionality. Job message received by-all active servers

Received Deliverable
* The server cluster can reorganize any time (and specifically after the loss of a computer). - i r

Job processed locally

Job message received locally
¢ The server is described fully by the current state and the sequence of messages received. -
K Processed
wr State machines: we have to implement consistent state adjustments (re-organization)

and consistent message passing (order needs to be preserved).

Ring of identical
servers

w Hot stand-by components, dynamic server group management.

[Schneider199

Distributed Systems

Distributed Systems
Redundancy (replicated servers)

Start-up (initialization) phase

Determine

coordinator @

Distributed Systems

Distributed Systems

Coordinator sends
job both ways

Distributed Syste

Distributed Systems
Redundancy (replicated servers)

eside

All server detect
two job-messages
= everybody
processes job

632
_L'"‘ - Distributed Systems

Distributed Systems
Redundancy

Start-up (initializat

Coordinator
determined

635
_L'"‘ - Distributed Systems
Distributed Systems

Redundancy (replicated servers)
istribute jo

Everybody received job
(but nobody
knows that)

Distributed Systems

Distributed Systems

Redundancy (replicated servers)

rdinator processes

Coordinator also
received two messages
and processes job

- Distributed Systems

Distributed Systems

Send Job

s Distributed Systems

Distributed Systems

Redundancy (replicated servers)
ing start

First server detects
two job-messages
5 processes job

Distributed Systems

Distributed Systems
Redundancy (replicated servers)

Coordinator delivers
his local result

.. L
- Distributed Systems

Distributed Systems
Redundancy (replicated servers)

Distributed Systems

Summary

Distributed Systems

Event: Server crash, new servers joining, or current servers leaving. Networks

e OS5, tc

. S Practical network standards
Server re-configuration is triggered by a message to all * Practicalnetwork standards
(this is assumed to be supported by the distributed operating system). e Time

¢ Synchronized clocks, virtual (logical) times

Each server on reception of a re-configuration message:
e Distributed critical regions (synchronized, logical, token ring)
. Wait for local job to complete or time-o
Store local consistent state S;.

¢ Distributed systems

3. Re-organize server ring, send local state around the ring. * Elections

. If a state 5/ with j > iis received then S Distributed states, consistent snapshots
. Elect coordinator Distributed servers (replicates, distributed process

Transactions (ACID properti rializable interlea

g, distributed commits)
6. Enter ‘Coordinator-’ or ‘Replicate-mode’

gs, transaction schedulers)

